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High precision experiments with molecules

 Molecules are complementary to atoms to study very tiny 
effects of fundamental physics
– more complex structure, more richer physics
– molecules may be more sensitive to certain effects
– fundamental tests of physics
• Electric Dipole Moment of the electron (ThO, De 

Mille,Gabrielse,Doyle)
• Fundamental constants measurement (kB, U. Napoli & LPL, 

me/mp,   U. Dusseldorf & LKB) and time-space variation (LPL, 
VUA, LENS)

• Test of the symetrization postulate (O2, CO2, G. Tino)
• Parity violation (due to weak interaction)(LPL)

 Most of these experiments are based on high resolution 
spectroscopy 3



High precision molecular spectroscopy

 Our objectives
– Probe molecular absorption lines at low pressure, with a   

linewidth 10 kHz to 100 Hz
– Achieve an absolute uncertainty of the frequency scale better than 

a few kHz, possibly < 0,3 Hz (10-14)

 Mid-IR Quantum Cascade Laser (QCL) 
– widely tunable, available in all the mid-IR, mW to W power levels, 

compact
– But free-running linewidth ~1 MHz → frequency stabilisation 

needed
– Challenging: frequency uncertainty (accuracy) down to 10-11-10-15

• Uncertainty of a commercial spectrometer > 10 MHz / 3x10-7
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Probing molecules with Quantum Cascade Lasers

 Frequency stabilization techniques developed since 15 years
– Fabry-Perot cavity, molecular line, injection, phase-locking

to a frequency standard…
→ stability ≥ a few 10-14 , accuracy ≥ 10-12

→ limited by mid-IR frequency reference
 To go further, near-IR frequency reference+primary standard !

– Near-IR ultrastable lasers have record stability and can be
monitored to primary standards in metroly institutes

– Bridge the gap between NIR and MIR with an optical
frequency comb

→ Stability and/or accuracy of the best frequency standards  
transferred to the mid-IR laser
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QCL stabilization onto a NIR frequency reference
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The remote frequency reference
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• Near-IR optical reference:
 Laser stabilised to an ultra-stable cavity
 1s-stability <10-15

 Residual drift < 10-2 Hz/s (after comp)
• Frequency controlled with H-maser, itself

monitored with Cs fountains
 uncertainty ~ 2x10-14

fiber link



43-km optical link between SYRTE and LPL
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Frequency stability of the 43-km fiber link
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Stability transfer using an optical frequency comb
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QCL frequency stabilization (1)
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QCL frequency stabilization (2)
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Measurement of the QCL stability
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QCL frequency stability
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⇒ QCL stability ~ 1,5x10-15 (0,05 Hz) from 1s to 100 s
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QCL frequency noise & linewidth
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⇒ QCL frequency noise ~10-2 Hz2/Hz between 1 and 100 Hz

⇒ QCL linewidth ~ 0,2 Hz (7x10-15)
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QCL frequency traceability to primary standards

• Direct link between near-IR and mid-IR frequencies

Primary
clocks

Ultrastable 
1.54 µm laser 

νref

QCL
High resolution

molecular
spectroscopy

SYRTE LPL43 km

accuracy

Optical 
frequency

comb

18

νQCL = nN (νref +fEOM - ∆ - Δ0 ) + Δ1

Referenced to RF local oscillator
disciplined to GPS + monitored
to RF reference from SYRTE
Contribution to QCL unc: 10-15

Uncertainty ~ 4x10-14 (1 Hz) 
limited by the near-IR 1-s 
frequency measurement



25 kHz peak-to-peak linewidth

Lorentzian fit (3rd + 5th

derivative)

Absorption lines in the vicinity of the R(14) CO2 line center

Line center uncertainty 
7×10-13, limited 
by systematics effects  
(pressure effects)

Saturated absorption spectroscopy of OsO4

19

Frequency (kHz)
50-50 100-100 0

B. Argence et al, Nature Photonics 2015



High-resolution spectroscopy of methanol
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• One of the most abundant interstellar and protostellar molecules
• Probe of interstellar clouds
• Contribute to the “grass” of any radio astronomy spectrum

• Second most abundant organic molecule in earth’s atmosphere
• Impact on air quality

• One of the simplest asymmetric-top molecule with hindered 
internal rotor

• Fundamental spectroscopy

• Previous measurements of rovibrational lines 
• HITRAN data base – uncertainty 5x10-7 = 15 MHz  
• One measurement at a few kHz

O
CH

H
H



High-resolution spectroscopy of methanol
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• Spectroscopy at ~971.9443 cm-1 (29,133 THz or 10,3 µm)
• Frequency modulation, 1-f detection
• Pressure 7 µbar, power ~1-2 mW

Multipass cell 
182 paths – 36 m

to frequency control

Saturated absorption 
in a multipass cell



High-resolution spectroscopy of methanol
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• Average of 5 up and down spectra, time constant of 2 s/point, 
frequency step: 15 kHz

ν8 P(E,co,0,2,33)

400 kHz



Spectroscopy of methanol: wide tunability

~400 MHz, continuous tuning range (EOM)

~100 GHz covered - 15 lines recorded

P(A-,co,0,4,33) ν8

P(A-,co,1,3,32) ν8

P(A+,co,0,4,33) ν8

(A,sb,0,1-,10)←(A,gr,2,1-,11)*

P(A+,co,1,3,32) ν8

HITRAN
simulation



High-precision frequency measurement
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Frequency measurement of line ν8 P(E,co,0,2,33)
• 2 measurement campaigns
• Shift between two campaigns =power shift
• Improvment of statistical uncertainty with time



High-precision frequency measurement
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Frequency measurement of line ν8 P(E,co,0,2,33)
• Shifted from Hitran data base ~ - 5 MHz 

Correction (kHz) Uncertainty (kHz)

frequency calibration 0 0.001 

power shift
-16.94 kHz for June measurements
-12.32 for October measurements

1,4

pressure shift 2.4 1

other spectroscopic 
effects 

not measured
estimated to be <5 kHz

5

line fitting 0 5

Total systematics
-14.74 for June measurements
-9.92 for October measurements

7.3

Statistics 1.1

Total 7.4
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Long-term objective: parity violation in molecules

 Context
– Parity violation is expected due to weak interaction
– Observed in nuclear physics and atoms
– Never seen in molecules because it’s too weak

 Test principle
– Ultra high resolution spectroscopy of a chiral molecule
– Relative frequency difference ΔνPV < 10-13

 Required laser performance
– Stability < a few 10-14

– Reproducibility ~ 10-14
Frequency

A
bs

or
pt

io
n

Left handed
molecule

Right handed
molecule

PVν∆

Project developed by Benoît Darquié
See for instance Darquié et al, Chirality (2010) + Tokunaga et al, NJP (2017)



Conclusion

 Transfer of frequency stability and accuracy from 1.54 µm to 10 µm
– 5-20 µm spectral region can be reach with appropriate crystal

 QCL stabilisation with unprecedented spectral purity & accuracy
– Linewidth < 0,2 Hz (7 x 10-15)
– Stability < 0,05 Hz (2 x 10-15)
– Accuracy ~ 1 Hz (4 x 10-14)

 Tunability
– Demonstrated over 400 MHz
– Could be increased to 1 GHz with a thermal tuning of the comb

 Perfect tool for ultra high sensitivity experiments with molecules
– Study of methanol doublets
– Spectroscopy of trioxane (CH2O)3 and ammonia NH3 in progress
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