

High-precision mid-IR molecular spectroscopy with frequency-stabilised Quantum Cascade Laser

D. B. A. Tran, R. Santagata, B. Argence, O. Lopez, A. Goncharov, S. Tokunaga, M. Abgrall, Y. Le Coq, H. Alvarez-Martinez, R. Le Targat, W.-K. Lee, D. Xu, P.-E. Pottie, B. Darquié, <u>A. Amy-Klein</u>

¹Laboratoire de Physique des Lasers, Université Paris 13, Sorbonne Paris Cité, CNRS ²LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université

- I. Motivation: high-precision experiments with molecules
- II. QCL frequency stabilization and tuning
- III. Application to high-resolution spectroscopy

With financial support from

- OFTEN project from European Metrology Research Programme EMPIR
- Agence Nationale de la Recherche with Labex First-TF and PVCM project
- Région Ile-de-France (DIM Nano-K)
- CNRS and Université Paris 13.

High precision experiments with molecules

- Molecules are complementary to atoms to study very tiny effects of fundamental physics
 - more complex structure, more richer physics
 - molecules may be more sensitive to certain effects
 - fundamental tests of physics
 - Electric Dipole Moment of the electron (ThO, De Mille,Gabrielse,Doyle)
 - Fundamental constants measurement (k_B, U. Napoli & LPL, m_e/m_p, U. Dusseldorf & LKB) and time-space variation (LPL, VUA, LENS)
 - Test of the symetrization postulate (O₂, CO₂, G. Tino)
 - Parity violation (due to weak interaction)(LPL)
- Most of these experiments are based on high resolution spectroscopy

Our objectives

- Probe molecular absorption lines at low pressure, with a linewidth 10 kHz to 100 Hz
- Achieve an absolute uncertainty of the frequency scale better than a few kHz, possibly $< 0.3 \text{ Hz} (10^{-14})$
- Mid-IR Quantum Cascade Laser (QCL)
 - widely tunable, available in all the mid-IR, mW to W power levels, compact
 - But free-running linewidth ~1 MHz \rightarrow frequency stabilisation needed
 - Challenging: frequency uncertainty (accuracy) down to 10⁻¹¹-10⁻¹⁵
 - Uncertainty of a commercial spectrometer > 10 MHz / $3x10^{-7}$

Probing molecules with Quantum Cascade Lasers

- Frequency stabilization techniques developed since 15 years
 - Fabry-Perot cavity, molecular line, injection, phase-locking to a frequency standard...
 - \rightarrow stability \geq a few 10⁻¹⁴ , accuracy \geq 10⁻¹²

 \rightarrow limited by mid-IR frequency reference

- To go further, near-IR frequency reference+primary standard !
 - Near-IR ultrastable lasers have record stability and can be monitored to primary standards in metroly institutes
 - Bridge the gap between NIR and MIR with an optical frequency comb
 - → Stability and/or accuracy of the best frequency standards transferred to the mid-IR laser

QCL stabilization onto a NIR frequency reference

Argence et al, Nat. Photon. 2015,

see also similar set-up around 6 μ m with a 642-km optical link between Turin and Florence, G. Insero et al, Scientific Reports 2017

The remote frequency reference

43-km optical link between SYRTE and LPL

2 parallel dark fibers: fiber1 with active noise compensation fiber2 assessment of the link performance by two-way frequency comparison

W K Lee et al, APB 2017, D. Xu et al, OE 2018

Frequency stability of the 43-km fiber link

Overlapping Allan deviation <10⁻¹⁵ at 1s <10⁻¹⁹ at 10⁴ s

Accuracy: 4x10⁻²⁰

For longer link (a few hundreds of km), residual noise is higher and only long-term stability and accuracy are preserved

Stability transfer using an optical frequency comb

Near-IR frequency

reference

- ✤ Uncertainty ~2x10⁻¹⁴

Optical fiber link

- Transfer without any degradation of the stability and uncertainty
- * Residual noise: 10^{-15} T^{-1} from 1 to 10^4 s

QCL frequency stabilization (1)

Comb locked to optical reference

a) Beatnote between a comb mode $(N f_{rep} + f_0)$ and the frequency reference $\Delta = V_{ref} - (N f_{rep} + f_0)$

b) Remove comb offset f_0 (by mixing with f_0 beatnote) $\Delta_0 = \mathbf{v}_{ref} - \mathbf{N} f_{rep}$

c) Process this phase-error signal with a phase-lock loop to lock comb repetition rate to the SYRTE remote reference

QCL frequency stabilization (2)

Measurement of the QCL stability

Assessment of the comb stability with a second ultrastable laser

 Assessment of the PLL performance by locking simultaneously the QCL and a CO₂ laser to the OFC

QCL frequency stability

 \Rightarrow QCL stability ~ 1,5x10⁻¹⁵ (0,05 Hz) from 1s to 100 s

QCL frequency noise & linewidth

QCL frequency tuning

QCL frequency tuning

QCL frequency traceability to primary standards

Saturated absorption spectroscopy of OsO₄

Absorption lines in the vicinity of the $R(14) CO_2$ line center

B. Argence et al, Nature Photonics 2015

High-resolution spectroscopy of methanol

- One of the most abundant interstellar and protostellar molecules
 - Probe of interstellar clouds
 - Contribute to the "grass" of any radio astronomy spectrum
- Second most abundant organic molecule in earth's atmosphere
 - Impact on air quality
- One of the simplest asymmetric-top molecule with hindered internal rotor
 - Fundamental spectroscopy
- Previous measurements of rovibrational lines
 - HITRAN data base uncertainty $5 \times 10^{-7} = 15$ MHz
 - One measurement at a few kHz

High-resolution spectroscopy of methanol

Saturated absorption in a multipass cell

- Spectroscopy at ~971.9443 cm⁻¹ (29,133 THz or 10,3 μm)
- Frequency modulation, 1-f detection
- Pressure 7 µbar, power ~1-2 mW

High-resolution spectroscopy of methanol

 Average of 5 up and down spectra, time constant of 2 s/point, frequency step: 15 kHz

Spectroscopy of methanol: wide tunability

High-precision frequency measurement

Frequency measurement of line v8 P(E,co,0,2,33)

- 2 measurement campaigns
- Shift between two campaigns = power shift
- Improvment of statistical uncertainty with time

20/11/2018

High-precision frequency measurement

Frequency measurement of line v8 P(E,co,0,2,33)

• Shifted from Hitran data base ~ - 5 MHz

	Correction (kHz)	Uncertainty (kHz)
frequency calibration	0	0.001
power shift	-16.94 kHz for June measurements -12.32 for October measurements	1,4
pressure shift	2.4	1
other spectroscopic effects	not measured estimated to be <5 kHz	5
line fitting	0	5
Total systematics	-14.74 for June measurements -9.92 for October measurements	7.3
Statistics		1.1
Total		7.4

Long-term objective: parity violation in molecules

- Context
 - Parity violation is expected due to weak interaction
 - Observed in nuclear physics and atoms
 - Never seen in molecules because it's too weak
- Test principle
 - Ultra high resolution spectroscopy of a chiral molecule
 - Relative frequency difference $\Delta v_{PV} < 10^{-13}$
- Required laser performance
 - Stability < a few 10^{-14}
 - Reproducibility ~ 10^{-14}

Project developed by Benoît Darquié See for instance Darquié et al, *Chirality* (2010) + Tokunaga et al, NJP (2017)

Conclusion

- Transfer of frequency stability and accuracy from 1.54 µm to 10 µm
 5-20 µm spectral region can be reach with appropriate crystal
- QCL stabilisation with unprecedented spectral purity & accuracy
 - Linewidth < 0,2 Hz (7 x 10^{-15})
 - Stability < 0,05 Hz (2 x 10^{-15})
 - Accuracy ~ 1 Hz (4 x 10⁻¹⁴)
- Tunability
 - Demonstrated over 400 MHz
 - Could be increased to 1 GHz with a thermal tuning of the comb
- Perfect tool for ultra high sensitivity experiments with molecules
 - Study of methanol doublets
 - Spectroscopy of trioxane $(CH_2O)_3$ and ammonia NH_3 in progress

MMTF group

Benoît Darquié, Olivier Lopez, An Tran (Rosa Santagata missing)