

Refimeve+

Arrival of the signal in the laboratory

SYstèmes de Référence Temps-Espace

A. Amy-Klein PI

O. Lopez

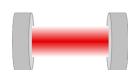
- E. Cantin
- M. Tønnes
- C. Chardonnet co-PI P.-E. Pottie co-PI

N. Quintin

Refimeve+ Summary

Introduction

- 1. Source signal in SYRTE
- 2. Transfer of the signal
- 3. Signal in your laboratory
 - Specifications
 - Practical considerations


Conclusion

Refimeve+ **Context and motivations** Optical metrology: references and transfer Stability Accuracy 10^{-12} With drift 10^{-14} With active dedrift $10^{-17} - 10^{-18}$ **Ultra-stable cavity** 10^{-16} **Optical clocks** 10^{-18} ~10⁻¹⁹ **Optical links** ~10⁻²⁰ 10^{-20} Total = quadratic sum 10^{-21} 10^{0} 10^{1} 10^{2} 10³ 104 10⁵ of all contributions Integration time (s)

Refimeve+ The SYRTE reference for REFIMEVE+

Laser emitting at 1,5 μm (1542.14 nm)

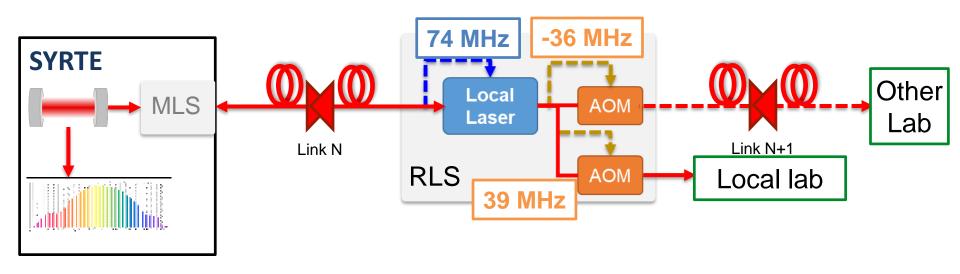
- stabilized to an ultrastable cavity : stability
- controlled versus local clocks : accuracy

- Current situation: still operations devoted to improve reliability
 - Sometimes no accurate control of the frequency and with frequency drift <1 Hz/s (<100 kHz/day)
 Stability or
 Stability or
 Uncertainty
- relative stab. relative Sometimes : no signal routine dedicated stab. @1s @1day Metrological setup in LNE-SYRTE 1E-15 3E-16 1E-14 2E-17 Hg H-Maser Cs Sr Network Ultrastable cavity

Refimeve+ Transfer: performances

Dissemination with active noise compensation

Regeneration laser station (RLS) + amplifiers



Performances of the transfer: End to End measurement

- Accuracy < 10⁻¹⁹ (contribution from mean frequency and its statistical fluctuations)
- > Stability < 10^{-15} @ 1s and < 10^{-19} @ 1 day (depends on link length and noise)

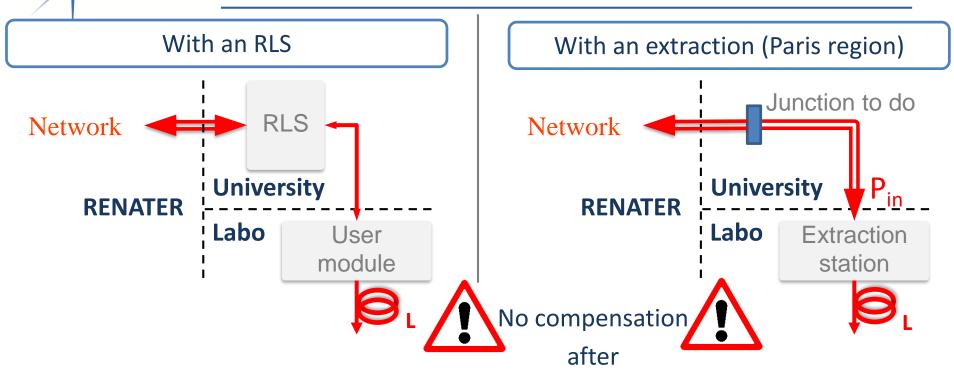
Refimeve+ Transfer: frequency shift

Frequency shifts from laser and link locks

Frequency shifts are known and fixed

Frequency received in the laboratory = frequency of the source + frequency shifts through transfer

Refimeve+ Transfer: linewidth


Laser linewidth at LNE-SYRTE : around 1 Hz

Phase noise accumulation during the transfer

Rule by hand:
Below 100 km of transfer: no effect
Above 100 km of transfer: linewidth below (or well below) 10 kHz (@1s measurement time)

Depends of link length and noise

Refimeve+ Arrival at the laboratory

- > Compensation of noise up to the last equipment
- > Performances of a non-compensated fiber: **below** 10^{-15} for L < 30m

See Xu et al., Opt. Express 27, 36965-36975 (2019)

Refimeve+ Arrival at the laboratory With an RLS With an extraction (Paris region) Junction to do **RLS** Network Network University University RENATER RENATER Labo Labo User Extraction module station $P_{opt} = 15\% P_{in}$ $P_{opt} = 1 \mu W$ (~1 μW)

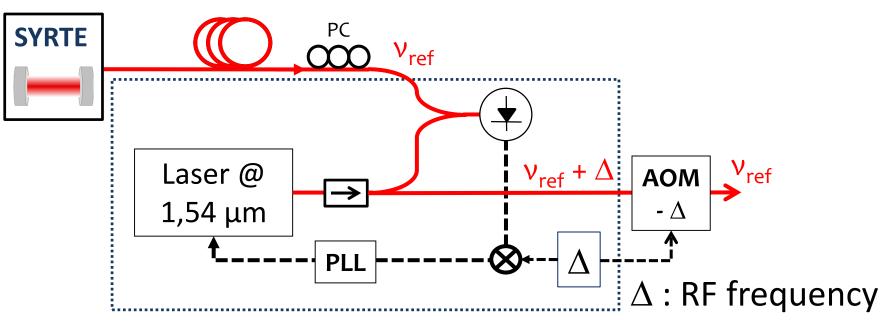
> Depending on applications, the signal should be **amplified**

Method # 1 : Erbium-doped fiber amplifier

+ DWDM filter (to eliminate the wideband ASE)

Refimeve+ Amplification

- Method #2 : optical tracking
 - Local laser phase-locked to the metrological signal
 - Local laser can be stabilized to an ultra-stable cavity


General comments:

- 1. Minimize the non-common optical paths to minimize non-common noises
- 2. RF can limit

See Santagata et al., Optica 6, 411-423 (2019)

Refimeve+ Amplification

- Method #2 : optical tracking
 - Local laser phase-locked to the metrological signal
 - Local laser can be stabilized to an ultra-stable cavity

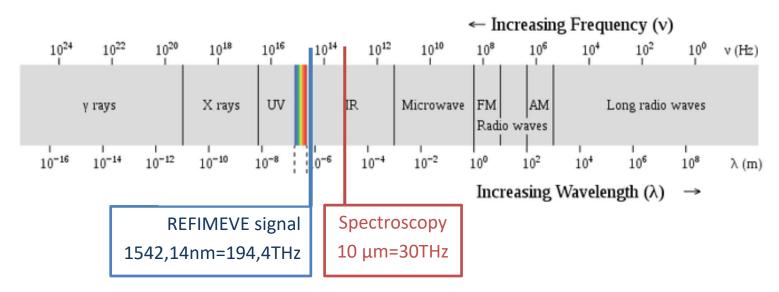
General comments:

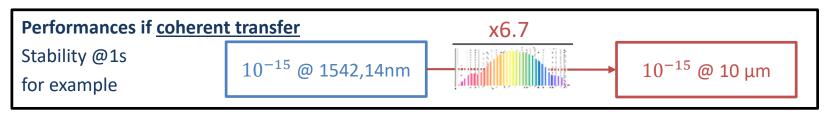
- 1. Minimize the non-common optical paths to minimize non-common noises
- 2. RF can limit

See Santagata et al., Optica 6, 411-423 (2019)

Refimeve+ Local RF frequency

1. <u>RF can limit</u>: choice of the RF oscillator


 $\checkmark\,$ Ratio between Δ and 200 THz release the specifications


✓ Minimize Δ : as we do for clock comparison

See Lodewyck et al., PRR 2, 043269 (2020)

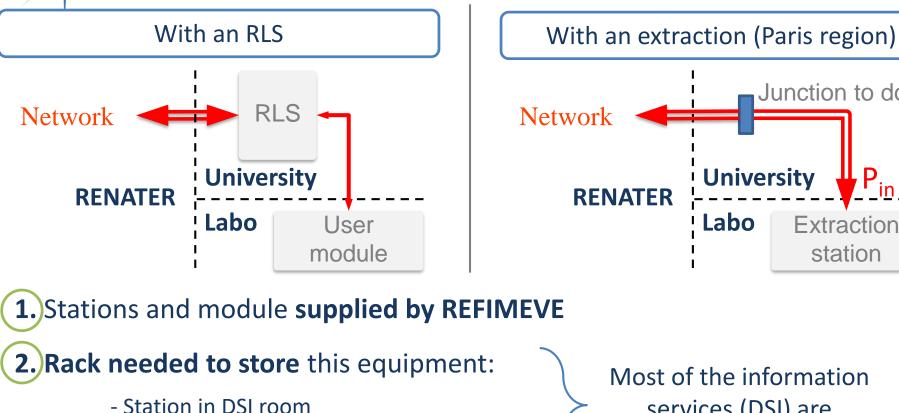
Refimeve+ Performance of the spectral transfer

Performances translated to different wavelength

Refimeve+ Pratical use in the lab

User interface (under development)

- Frequency of the delivered signal (including the shifts)
- Source and link availability ("weather map")


Transfer of the stability performance to another frequency

- \blacktriangleright With a frequency **comb**: from UV to MIR (10 μ m) and RF
- With a transfer cavity (limited range and performance)

Frequency measurements

Accuracy = quadratic sum of the source accuracy (+link accuracy) + <u>local accuracy</u> (contribution from comb, local RF...)

Refimeve+ Arrival at the laboratory

- Module or station in your lab

Most of the information services (DSI) are contacted already

University

Labo

3.)Check fiber availability in your university: **1 or 2 singlemode fibers** with

- connections in both side with FC/APC connectors
- dedicated to the project
- the less intermediate connections possible

Preferably but non necessary

Junction to do

Extraction

station

Refimeve+ Conclusion

Please contact your information services of university (DSI)

Signal you receive

- Laser stable and accurate (transfer don't degrade) with known frequency around 1542.14nm
- ➢ Signal with power of 1µW and linewidth from 1Hz to 10kHz (depending on links)

Use of the signal

- Amplification and spectral transfer (recommendations on RF, optical paths...)
- User interface to help (under development)