Quantum-Noise Reduction to improve Gravitational-Wave Detectors

- 1. Aims of the CALVA experiment
 - Develop quantum-optics tools for gravitational-wave detectors
 - Enable exploration of new astrophysical sources: more massive and/or more distant
- 2. Participation of CALVA in the Refimeve + network & collaboration

Gravitational waves (GW)

ORIGIN AND EFFECTS OF GW (EINSTEIN, 1916)

Oscillations of the space-time curvature produced by accelerated masses, and propagating at the speed of light in vacuum.

Gravitational waves (GW)

ORIGIN AND EFFECTS OF GW (EINSTEIN, 1916)

• Oscillations of the space-time curvature produced by accelerated masses, and propagating at the speed of light in vacuum.

AMPLITUDE OF A GRAVITATIONAL WAVE

• Amplitude of space-time strain at distance r given by:

 $\delta L/L = h(r)/2 \propto 1/r$

• Example : coalescence of black-hole binaries (1st observation, 2015)

 $m_1=m_2=30~M_\odot$, distance $r=400~{
m Mpc}$

$$\Rightarrow \delta L/L \sim 10^{-21}$$

Gravitational waves (GW)

ORIGIN AND EFFECTS OF GW (EINSTEIN, 1916)

Oscillations of the space-time curvature produced by accelerated masses, and propagating at the speed of light in vacuum.

 δ

 $T_{\rm GW}/4$

Х

- Examples: LIGO / Virgo / KAGRA
 - State-of-the-art sensitivity $\leq 10^{-23}$
 - Arms length \sim 3–4 km ($\delta L \sim 10^{-20}$ m)
 - Suspended mirrors
 - Fabry-Perot cavities
 - Vacuum interferometer

CLASSICAL NOISE SOURCES

- Mechanical noise
 - Seismic + Newtonian
 - Solution: underground/spaceborne (upcoming projects ET/CE...)

Manuel Andia – AG Refimeve+

Source: ADV + TDR

CLASSICAL NOISE SOURCES

- Mechanical noise
 - Seismic + Newtonian
 - Solution: underground/spaceborne (upcoming projects ET/CE...)
- Thermal (Brownian) noise
 - Mirrors + suspensions
 - Solution: cryogenic environment (upcoming projects)

Manuel Andia – AG Refimeve+

Source: ADV+ TDR

CLASSICAL NOISE SOURCES

- Mechanical noise
 - Seismic + Newtonian
 - Solution: underground/spaceborne (upcoming projects ET/CE...)
- Thermal (Brownian) noise
 - Mirrors + suspensions
 - Solution: cryogenic environment (upcoming projects)

QUANTUM NOISE SOURCES

- Radiation pressure noise
 - Dominates at low frequency
 - Amplitude-noise-related

CLASSICAL NOISE SOURCES

- Mechanical noise
 - Seismic + Newtonian
 - Solution: underground/spaceborne (upcoming projects ET/CE...)
- Thermal (Brownian) noise
 - Mirrors + suspensions
 - Solution: cryogenic environment (upcoming projects)

QUANTUM NOISE SOURCES

- Radiation pressure noise
 - Dominates at low frequency
 - Amplitude-noise-related
- Photon shot noise
 - Dominates at high frequency
 - Phase-noise-related

HARNESSING QUANTUM PROPERTIES OF LIGHT TO REDUCE NOISE

• Optical Parametric Oscillator (OPO): quantum entanglement between 2 photons

HARNESSING QUANTUM PROPERTIES OF LIGHT TO REDUCE NOISE

• Optical Parametric Oscillator (OPO): quantum entanglement between 2 photons

HARNESSING QUANTUM PROPERTIES OF LIGHT TO REDUCE NOISE

• Optical Parametric Oscillator (OPO): quantum entanglement between 2 photons

Manuel Andia – AG Refimeve+

()

 $2\omega_0$

SHG

 ω_0

HARNESSING QUANTUM PROPERTIES OF LIGHT TO REDUCE NOISE

• Optical Parametric Oscillator (OPO): quantum entanglement between 2 photons

Manuel Andia - AG Refimeve+

()

 $2\omega_0$

SHG

 ω_0

Implementation of squeezed states of light for Advanced-Virgo

CURRENT PROGRESS

- \checkmark Phase squeezing implemented on Advanced Virgo
- 3 dB gain at high frequency
- Low-frequency noise not yet dominated by quantum sources

Source: Advanced Virgo

Implementation of squeezed states of light for Advanced-Virgo

CURRENT PROGRESS

- \checkmark Phase squeezing implemented on Advanced Virgo
- 3 dB gain at high frequency
- Low-frequency noise not yet dominated by quantum sources

\rightarrow Reduce quantum noise in the whole frequency range?

Source: Advanced Virgo

Implementation of squeezed states of light for Advanced-Virgo

CURRENT PROGRESS

- \checkmark Phase squeezing implemented on Advanced Virgo
- 3 dB gain at high frequency
- Low-frequency noise not yet dominated by quantum sources

\rightarrow Reduce quantum noise in the whole frequency range?

Manuel Andia - AG Refimeve+

The Exsqueez project and CALVA experiment

The Exsqueez project and CALVA experiment

The Optical Parametric Oscillator and its cavity

The Optical Parametric Oscillator and its cavity

• 532nm pump through PPKTP crystal \rightarrow Squeezed beam at 1064nm

- Cavity used to improve OPO efficiency (different design from Virgo)
- Crystal wedge \rightarrow tuning of cavity coresonance through lateral positioning
- Crystal is temperature-controlled for quasi-phase-matching

- Aim: phase-lock local oscillator and squeezing beams
 - Squeezing beam too dim (a few femto Watt!) \rightarrow need auxiliary beam "MCL" (and "PL")

- Aim: phase-lock local oscillator and squeezing beams
 - Squeezing beam too dim (a few femto Watt!) \rightarrow need auxiliary beam "MCL" (and "PL")
- Two-stage locking:

- Aim: phase-lock local oscillator and squeezing beams
 - Squeezing beam too dim (a few femto Watt!) \rightarrow need auxiliary beam "MCL" (and "PL")
- Two-stage locking:

- Aim: phase-lock local oscillator and squeezing beams
 - Squeezing beam too dim (a few femto Watt!) \rightarrow need auxiliary beam "MCL" (and "PL")
- Two-stage locking:

 \rightarrow We want to generate 15 dB squeezing, measure 10 dB

Reducing factors leading to squeezing degradation

This work started at IJCLab during ANR project « Exsqueez »

Reducing factors leading to squeezing degradation

This work started at IJCLab during ANR project « Exsqueez »

OTHER FACTORS DEGRADING THE SQUEEZING

- Imperfect optical mode-matching
- Optical loss
- Squeezer instability

Reducing factors leading to squeezing degradation

This work started at IJCLab during ANR project « Exsqueez »

Reducing factors leading to squeezing degradation (2)

MASTERING OPTICAL WAVEFRONTS

- Maximise coupling between beams (improve squeezing quality)
- Thermally-Deformable Mirrors (TDM)
 - Array of resistors to induce local dephasing
 - Real-time control and correction of wavefronts
 - Compatible with vacuum operation

Reducing quantum noise over the whole frequency range

ADAPTING THE SQUEEZING TRANSITION FREQUENCY

- Control finesse of filter cavity
 - Tunable mirror "QFilter"
 - Pre-cavity \Leftrightarrow mirror with tunable reflectivity

Reducing quantum noise over the whole frequency range

ADAPTING THE SQUEEZING TRANSITION FREQUENCY

- Control finesse of filter cavity
 - Tunable mirror "QFilter"
 - Pre-cavity ⇔ mirror with tunable reflectivity
- Allows for tunability of Ω_t
 - 700 Hz (Exsqueez, no QFilter) \rightarrow 30 Hz (Exsqueez, with QFilter \Leftrightarrow Adv. Virgo)
 - Equivalent to $\mathcal{F}^* = \mathcal{F} \times 20$

Manuel Andia – AG Refimeve+

Reducing quantum noise over the whole frequency range

ADAPTING THE SQUEEZING TRANSITION FREQUENCY

- Control finesse of filter cavity
 - Tunable mirror "QFilter"
 - Pre-cavity ⇔ mirror with tunable reflectivity
- Allows for tunability of Ω_t
 - 700 Hz (Exsqueez, no QFilter) → 30 Hz (Exsqueez, with QFilter \Leftrightarrow Adv. Virgo)
 - Equivalent to $\mathcal{F}^* = \mathcal{F} \times 20$
- Three-mirror cavity model under study

Manuel Andia – AG Refimeve+

Benefits of the Refimeve + network for CALVA

CONTROLLING LENGTH OF FILTER CAVITY

- High finesse (~ 3000)
- Length control via control laser
 - $-\frac{\Delta L}{L}=\frac{\Delta f}{c}$

- Example:

- $\Delta f \simeq 20 \text{ Hz} \Leftrightarrow \Delta L = 4 \text{ pm} (L = 50 \text{m}, \lambda_{laser} = 1064 \text{nm})$
- Corresponds to ~1 dB of squeezing degradation (for 10 dB of squeezing produced)

Benefits of the Refimeve + network for CALVA

CONTROLLING LENGTH OF FILTER CAVITY

- High finesse (~ 3000)
- Length control via control laser
 - $-\frac{\Delta L}{L} = \frac{\Delta f}{f}$
 - L j
 - Example:
 - $\Delta f \simeq 20 \text{ Hz} \Leftrightarrow \Delta L = 4 \text{ pm} (L = 50 \text{m}, \lambda_{laser} = 1064 \text{nm})$
 - Corresponds to ~1 dB of squeezing degradation (for 10 dB of squeezing produced)

CHARACTERISING STABILISATION OF SQUEEZING PUMP LASER

- First study of impact of laser stabilisation on squeezing quality
- Several test possibilities: with/without stabilisation, vacuum/in-air (detection and/or squeezer)...

Manuel Andia – AG Refimeve+

Involvement in the Einstein Telescope project

UPCOMING EUROPEAN GW DETECTOR (2035 – 2040 FOR NOW...)

- Arms length 10km (vs. 3km for Virgo)
- Underground (better control of seismic vibrations)
- Likely triangular shape (i.e. 3 intertwined interferometers \rightarrow better sensitivity)
 - Each one is composed of a low- and a high-frequency interferometer (ET-LF / ET-HF)
 - ET-LF requires cryogenic operation
 - ET-HF will use more optical power

Source: Einstein Telescope / EGO (<u>https://www.et-gw.eu/</u>)

Manuel Andia - AG Refimeve+

Involvement in the Einstein Telescope project (2)

CALVA IN THE CONTEXT OF **EINSTEIN TELESCOPE**

- New wavelength: ET-LF at 1.55 $\mu m?$
 - Cryogenic materials considered may be incompatible with 1064nm
 - CALVA can adapt its wavelength thanks to QFilter!
- Testbed for upcoming (frequency-dependent) squeezing techniques
 - Unique feature: state-of-the-art laser stabilisation through Refimeve+!
- The group is also involved in simulation, optics and technical aspects of ET's design

XIII ET Symposium, Cagliari, May 2023

Manuel Andia – AG Refimeve+