

Comparaison des horloges Européennes

Jérôme Lodewyck SYRTE O Observatoire | PSL 🔀

CONNECTING EUROPEAN ATOMIC CLOCKS

CLOCK NETWORK

- 12+ optical clocks with 10^{-17} to 3×10^{-18} accuracy
- 6 microwave fountain clocks

MOTIVATION

- Validation of the clocks accuracy
- Measurements of frequency ratios
- Tests of fundamental physics

CONNECTING EUROPEAN ATOMIC CLOCKS

CLOCK NETWORK

- 12+ optical clocks with 10^{-17} to 3×10^{-18} accuracy
- 6 microwave fountain clocks

MOTIVATION

- Validation of the clocks accuracy
- Measurements of frequency ratios
- Tests of fundamental physics

CHALLENGE

- Large and diverse team (clocks, combs, links, cavities)
- All working together at a given time, for several weeks

CONNECTING EUROPEAN ATOMIC CLOCKS

 $\rho_{\rm Sr~Syrte,Sr~PTB} = \rho_{\rm Sr~Syrte,IR~Fr} \times \rho_{\rm IR~Fr,IR~De} \times \rho_{\rm IR~De,Sr~PTB}$

$$\rho_{n,0} = \rho_{n,n-1} \times \rho_{n-1,n-2} \times \ldots \times \rho_{2,1} \times \rho_{1,0}$$

 $\rho_{\rm Sr~Syrte,Sr~PTB} = \rho_{\rm Sr~Syrte,IR~Fr} \times \rho_{\rm IR~Fr,IR~De} \times \rho_{\rm IR~De,Sr~PTB}$

$$\rho_{n,0} = \rho_{n,n-1} \times \rho_{n-1,n-2} \times \ldots \times \rho_{2,1} \times \rho_{1,0}$$

IDEA 1: "REDUCED FREQUENCY RATIOS" $\rho_{i,j} = \rho_{i,j}^0 (1 + y_{i,j})$

 $y_{n,0} = y_{n,n-1} + y_{n-1,n-2} + \ldots + y_{2,1} + y_{1,0}$

 $\rho_{\rm Sr \; SYRTE,Sr \; PTB} = \rho_{\rm Sr \; SYRTE,IR \; Fr} \times \rho_{\rm IR \; Fr,IR \; De} \times \rho_{\rm IR \; De,Sr \; PTB}$

$$\rho_{n,0} = \rho_{n,n-1} \times \rho_{n-1,n-2} \times \ldots \times \rho_{2,1} \times \rho_{1,0}$$

IDEA 1: "REDUCED FREQUENCY RATIOS" $\rho_{i,j} = \rho_{i,j}^0 (1 + y_{i,j})$ $y_{n,0} = y_{n,n-1} + y_{n-1,n-2} + \ldots + y_{2,1} + y_{1,0}$

"Inaccuracy" of the link lasers

 $\rho_{\rm Sr \; Syrte, Sr \; PTB} = \rho_{\rm Sr \; Syrte, IR \; Fr} \times \rho_{\rm IR \; Fr, IR \; De} \times \rho_{\rm IR \; De, Sr \; PTB}$

$$\rho_{n,0} = \rho_{n,n-1} \times \rho_{n-1,n-2} \times \ldots \times \rho_{2,1} \times \rho_{1,0}$$

IDEA 1: "REDUCED FREQUENCY RATIOS" $\rho_{i,j} = \rho_{i,j}^{0} (1 + y_{i,j})$ $y_{n,0} = y_{n,n-1} + y_{n-1,n-2} + \dots + y_{2,1} + y_{1,0}$ IDEA 2: "TRANSFER BEATS" $f_{i,j}^{T} = \nu_i - \frac{m_i}{m_j} \nu_j$ $\rho_{n,0} = \text{affine combination of } f_{i,j}^{T}$

⚠ "Inaccuracy" of the link lasers

 $\rho_{\rm Sr \; Syrte, Sr \; PTB} = \rho_{\rm Sr \; Syrte, IR \; Fr} \times \rho_{\rm IR \; Fr, IR \; De} \times \rho_{\rm IR \; De, Sr \; PTB}$

$$\rho_{n,0} = \rho_{n,n-1} \times \rho_{n-1,n-2} \times \ldots \times \rho_{2,1} \times \rho_{1,0}$$

IDEA 1: "REDUCED FREQUENCY RATIOS" $\rho_{i,j} = \rho_{i,j}^{0} (1 + y_{i,j})$ $y_{n,0} = y_{n,n-1} + y_{n-1,n-2} + \dots + y_{2,1} + y_{1,0}$ IDEA 2: "TRANSFER BEATS" $f_{i,j}^{T} = \nu_i - \frac{m_i}{m_j} \nu_j$ $\rho_{n,0} = \text{affine combination of } f_{i,j}^{T}$

"Inaccuracy" of the link lasers

Physical significance, micro-wave clocks

CLOCK COMPARISONS: FIRST COMPARISON

2015: Comparison Sr2 SYRTE vs. Sr PTB

- 1415 km long fiber link
 SYRTE LPL PTB
- first remote comparison of optical clocks below the SI:

 ${\sf Sr}_2$ - ${\sf Sr}_{\sf PTB} = (-4.7\pm5.0) imes10^{-17}$

C. Lisdat et al., Nat. Comm. 7 12443 (2016)

CLOCK COMPARISONS: TESTS OF FUNDAMENTAL PHYSICS

2016: Comparison Sr2 SYRTE vs. SrB SYRTE vs. Sr NPL

• Sr₂ - Sr_B =
$$(2.3 \pm 7.1) \times 10^{-17}$$

 $\blacksquare~{\rm Sr}_{\rm NPL} \simeq 10^{-16}$ away

CLOCK COMPARISONS: TESTS OF FUNDAMENTAL PHYSICS

2016: Comparison Sr2 SYRTE vs. SrB SYRTE vs. Sr NPL

• Sr₂ - Sr_B =
$$(2.3 \pm 7.1) \times 10^{-17}$$

• $Sr_{NPL} \simeq 10^{-16}$ away

- Fractional frequency shift on a clock = $\alpha \frac{\vec{v}_{\text{clock/CMB}}^2}{c^2}$
- $\blacksquare \Rightarrow$ In a frequency comparison between distant clocks A and B

$$\Delta_{\mathsf{LI}} \simeq 2lpha rac{(ec{v}_{\mathsf{A}/\mathsf{Earth}} - ec{v}_{\mathsf{B}/\mathsf{Earth}}) \cdot ec{v}_{\mathsf{Earth}/\mathsf{CMB}}}{c^2}$$

RESULT

Bayesianf fit of Δ_{LI} with the combined SYRTE – PTB and SYRTE – NPL data (200 hours) \Rightarrow bound on $|\alpha| \lesssim 10^{-8}$

P. Delva et al., Phys. Rev. Lett. 118 221102 (2017)

SEARCH FOR DARK MATTER TRANSIENTS: New J. Phys. 22 093010 (2020), arXiv:2312.13723 (2023)

J. Lodewyck — AG REFIMEVE - 2024/10/03

2017: Joint Campaign SYRTE, NPL, PTB, Sr, Hg and Yb⁺

 \blacksquare Sr_2 - Sr_{PTB} = 10^{-16} to 10^{-15}

2017: JOINT CAMPAIGN SYRTE, NPL, PTB, SR, HG AND YB⁺

•
$$Sr_2 - Sr_{PTB} = 10^{-16}$$
 to 10^{-15}

Technical systematic effect:

JOINT CAMPAIGN SYRTE, NPL, PTB, SR AND YB⁺

- 2017: Sr₂ Sr_{PTB} = $(0.8 \pm 3) \times 10^{-17}$
- 2018: Sr₂ Sr_{PTB} = $(-1.5 \pm 2.5) \times 10^{-17}$

JOINT CAMPAIGN SYRTE, NPL, PTB, SR AND YB⁺

- 2017: Sr₂ Sr_{PTB} = $(0.8 \pm 3) \times 10^{-17}$
- 2018: Sr₂ Sr_{PTB} = $(-1.5 \pm 2.5) \times 10^{-17}$

Frequency stability:

CLOCK COMPARISONS: GETTING BIGGER

2017/2024: Comparison of microwave 2022: Comparison of Cavities Fountains

Metrologia 54 348 (2017)

Nat. Comm. 13 212 (2022)

CLOCK COMPARISONS: GETTING BIGGER

2017/2024: Comparison of microwave 2022: Comparison of cavities fountains

Nat. Comm. 13 212 (2022)

2022: ROCIT PROJECT SYRTE, PTB, INRIM ; Sr, Yb, Yb⁺ E_3 , Yb⁺, E_2 , In⁺, Sr⁺ ; NPL, VTT, UMK by satellite.

2023/2024: ICON PROJECT comparison of RIKEN and PTB Sr transportable clocks at NPL and PTB ; SYRTE Hg clock data. J. Lodewyck – AG REFIMEVE - 2024/10/03

CONCLUSION

CONCLUSION

Clock comparisons by optical fibre links are an irreplaceable tool for:

- validating the clock systematic evaluation
- measuring frequency ratios
- tests of fundamental physics

WHAT'S NEXT ?

- Roadmap for the redefinition of the SI second: confirm the frequency ratios, measure ratios closures.
- Promote agile comparisons ; exploit the excellent up-time of fibre links

