

BOOSTED project

Raphaël Marion ROB

Belgian Optical network for Optical frequency Standards and TimE Dissemination

> Implementing a Time & Frequency (T&F) network in Belgium

- ➢ Project lead: ROB
 - **R**. Marion (PI)
 - 🛛 G. Leportz
 - 🛛 E. Pinat
 - P. Defraigne

With the great support of:

- Collaboration between ROB & Belnet
 - □ T&F signals produced by ROB
 - □ Transported by Belnet over its network

We are just one step on the way to an organization like REFIMEVE

> Also transport signals internationally through collaboration with GEANT into C-TFN project

National Network

The BELNET network

The Belnet network

The BOOSTED network

The FOTON network

The (EWI-FWO) network

Some use cases

Research & Education

Source : FOTON proposal

UCLouvain High-resolution spectroscopy

UMONS Coherent detection phase-OTDR

Space-qualified clock characterization

Cavity solitons

Secured TELECOM against GNSS threats

Quantum Key Distribution

Sensing / Navigation

Precise positioning for railway applications

To-do list :

- Smartgrid
- Trading
- Seismo (ROB)
- VLBI (ROB)

Towards a T&F market?

Connecting communities

European Transport Layer (Geant + NMI)

Producer Layer (NMI)

Transport Layer (NREN)

Commercial distribution Layer (TELCO)

Users Layer

Some open technical questions

The Northern EU "Ring(s)" design

Ring topology

Because it's cheaper and provides better service?

And the SAGNAC effect ?!

The downlink problem

The downlink problem

The downlink problem

So what ?

The "causality problem" could have two possibles explanations :

1. The breakdown in enough spans is sufficient to circumvent the Sagnac effect

A downlink following same path than uplink cancels out the discrepancies
BUT blinds the true frequency at the end node !!

So, downlink *useless* for <u>non-reciprocal noise</u> while ring could possibly provide additional info

The plan

Belgian level:

- 1. Check @AG Refimeve what are the alternative explanations ^^!
- 2. Focus first on dissemination (uplinks) and start with a ring (cheapest)
- 3. Check if it is possible to use the error signal for additional corrections

European level:

- 1. Listen the more experienced partners express themselves
- 2. Warn them that the design could not be changed easily before 10 years
- 3. Press them to speed up to a compromise because of the lead time of the material !!

Thank you !