

How to use the metrological signal : amplification and optical comb control

Anne Amy-Klein, LPL

- Amplification of the metrological signal
- Stability and accuracy transfer with an optical frequency comb

Which signal will you received?

- Metrological laser signal at 1.542 μm
 - \succ Power from 1 μ W to 100 μ W
 - > Frequency stability $\approx 10^{-14} @ 1 s$ (full BW)
 - > Frequency accuracy $\approx 10^{-14}$
- This stability degrades after propagation in a local optical fiber
 - Main effect : thermal effect, after 1 m, stability floor is $\approx 10^{-17}$
 - Fiber noise DSP : 10⁻¹-100 rad²/Hz/km @ 1 s

Metrological signal stability with a 540-km link

Refimeve+

Amplification (I)

- Depending of applications, the signal should be amplified
- Method # 1 : Erbium-doped fiber amplifier + DWDM filter (to eliminate the wideband ASE)

Refimeve+ Amplification (II)

Method #2 : optical tracking

Local laser phase-locked to the metrological signal
Local laser can be stabilized to an ultra-stable cavity

Refimeve+ Local RF frequency

- Usual RF frequency (from synthesizer)
 - ► Accuracy 10⁻⁶
 - \blacktriangleright If Δ =100 MHz, accuracy 100 Hz \rightarrow 5×10⁻¹³ @ 200 THz
- GPS-disciplined low-noise RF oscillator
 - \blacktriangleright Accuracy < 10⁻¹⁰
 - > If Δ =100 MHz, accuracy 0.01 Hz \rightarrow 5×10⁻¹⁷ @ 200 THz

Refimeve+ Amplification (III)

Method #2 : optical tracking

Stability transfer to another frequency

- An optical frequency comb enables to transfer the stability and accuracy to other frequencies
- Two steps

A femtosecond laser as optical frequency comb

fs laser : pulses of duration 10-100 fs every $1/f_{rep}$ (1-10 ns)

Frequency to be measured

- f_{rep} : fine scaling ($f_{rep} \sim 100 \text{ MHz} 1 \text{ GHz}$)
- optical frequency ~ $p \times f_{rep}$ with p an integer ~ 10⁴ to 10⁶

Frequency domain

Refimeve+ Comb frequency control

Every mode frequency depends of the two RF frequencies :

 $v_p = pf_{rep} + f_0$

- f_{rep} and f₀ should be stabilized in order to control the comb modes frequencies
- f_{rep} is controlled with the metrological signal (optical frequency reference)
- f₀ is free or controlled with a RF frequency reference

Refimeve+ Stabilisation of f_{rep}

 Beatnote between the metrological signal and the nearest mode of the comb

Comb stability and accuracy depend on the local RF reference 28/06/2013

 f₀ can be removed from the optical beatnote and let free

Frequency measurement

The laser frequency to be measured is inside the comb spectrum

$$v_{\text{mes}} = \Delta_{\text{m}} + (\mathbf{q}\mathbf{f}_{\text{rep}} + \mathbf{f}_{\text{o}}) = \Delta_{\text{m}} + (\mathbf{q}/\mathbf{p})(v_{\text{ref}} - \Delta) + \mathbf{f}_{\text{o}}$$

Refimeve+ Or frequency control

 The laser frequency to be measured is inside the comb spectrum

Frequency accurate determination (I)

- How to determine the frequency ?
 - Determination of p and q
 - Determination of the signs

 $\nu_{mes} = \pm \Delta_m + (qf_{rep} \pm f_o) = \pm \Delta_m + (q/p)(\nu_{ref} \pm \Delta) \pm f_o$

- You need to know f_{rep} , v_{ref} et v_{mes} with enough accuracy
- Or you combine two or more measurements with different f_{rep}

Frequency accurate determination (II)

 Example : the repetition rate stabilisation (after f₀ removal)

 $\Delta = \pm \left(\nu_{ref} - pf_{rep} \right)$

With v_{ref} = 194 395 310 263 841 Hz

 Δ = 150 000 000,00 Hz (10⁻¹⁰ accuracy)

f_{rep}= 249 998 919,95 Hz

One calculate : p1= $(v_{ref} + \Delta)/f_{rep}$ = 777 585,2004

p2= (ν_{ref} - Δ)/f_{rep}= 777 584,0004 : OK

Mid-IR frequency measurement

- Outside the comb spectrum (even with extra broadening)
- An extra set-up is required : $v_{MIR} \approx v_p v_q = (p-q)f_{rep}$ v_{MIR} $(p-q) f_{rep}$ Sum-frequency generation in a nonlinear crystal $p f_{rep} + f_0$ ν $q f_{rep} + f_0$ $q f_{rep} + f_0 + v_{MIR}$ example : 1850 nm + 10 μm = 1550 nm 28/06/2013 21

- Various schemes for the comb frequency control and the frequency stability and accuracy transfer
- A local RF reference frequency is required for accurate frequency transfer

Frequency noise PSD [Hz²/Hz]

